Το σύμπαν είναι γραμμένο στη γλώσσα των μαθηματικών!
Φυτά με εντυπωσιακή συμμετρία!
Μμπορεί να φαίνεται τέλειο για να είναι αληθινό, όμως αυτά τα φυτά που βλέπετε βρίσκονται στη φύση και αποτελούν άριστα παραδείγματα… γεωμετρίας! Βλέποντάς τα μπορεί να πιστεύουμε πως το ανθρώπινο χέρι έχει επέμβει στην εμφάνισή τους, όμως τίποτα τέτοιο δεν έχει συμβεί. Άλλωστε ο Galileo Galilei έγραψε στο “Il Saggiatore”:
[Το σύμπαν] είναι γραμμένο στη γλώσσα των μαθηματικών και οι χαρακτήρες του είναι τρίγωνα, κύκλοι και άλλα γεωμετρικά σχήματα!”. Απολαύστε λοιπόν τις εικόνες και αφεθείτε στη μαγεία της φύσης…
1. Aloe Polyphylla
2. Amazon Lily Pad
3. Romanesco Broccoli
4. Crassula Buddha’s Temple Plant
5. Dahlia
6. Jeweled Carpet
7. Drosophyllum Lusitanicum
8. Fractal Cabbage
9. Sunflower
10. Hoya Aldrichii
11. Thinking Cactus
12. Camelia
13. Spiraling Succulent
14. Ludwigia Sedioides
15. Viola Sacculus
16. Succulents
17. Lobelia
18. Pelecyphora Aselliformis
ΠΗΓΗ
http://perierga.gr/2015/04/%CF%86%CF%85%CF%84%CE%AC-%CE%BC%CE%B5-%CE%B5%CE%BD%CF%84%CF%85%CF%80%CF%89%CF%83%CE%B9%CE%B1%CE%BA%CE%AE-%CF%83%CF%85%CE%BC%CE%BC%CE%B5%CF%84%CF%81%CE%AF%CE%B1/
10 εντυπωσιακά παραδείγματα συμμετρίας στη φύση!
Για αιώνες, η συμμετρία παραμένει ένα θέμα που γοητεύει φιλοσόφους, αστρονόμους, αμθηματικούς, ακλλιτέχνες, αρχιτέκτονες και φυσικούς. Οι αρχαίοι Έλληνες είχαν εμμονή εμμονή με αυτήν και ακόμα και σήμερα όλοι έχουμε την τάση να επιζητάμε τη συμμετρία στα πάντα, από το σχεδιασμό και τη διάταξη των επίπλων μας μέχρι το φορμάρισμα των μαλλιών μας. Ιδιαίτερα στη φύση, η συμμετρία αποκτά άλλο ενδιαφέρον γιατί εκεί δεν μπήκε ανθρώπινο χέρι…
10. Μπρόκολο Romanesco
Έχει ασυνήθιστη εμφάνιση και συχνά εκλαμβάνεται ως κάποιο είδος των γενετικώς τροποποιημένων τροφίμων. Αλλά στην πραγματικότητα είναι μία μόνο από τις πολλές περιπτώσεις της φράκταλ συμμετρίας στη φύση. Στη γεωμετρία, φράκταλ ονομάζεται ένα γεωμετρικό σχήμα που επαναλαμβάνεται αυτούσιο σε άπειρο βαθμό μεγέθυνσης, ή πιο απλά το κάθε μέρος ενός πράγματος έχει το ίδιο γεωμετρικό μοτίβο ως σύνολο.
9. Κερήθρα
Οι μέλισσες φαίνεται ότι έχουν σημαντική ικανότητα στη γεωμετρία. Για χιλιάδες χρόνια, οι άνθρωποι θαυμάζουν τα τέλεια εξαγωνικά «κουτάκια» στις κυψέλες τους και αναρωτιούνται με ποιον τρόπο οι μέλισσες μπορούν να δημιουργήσουν κάτι που ο άνθρωπος για να το κάνει χρειάζεται σίγουρα χάρακα και διαβήτη. Η κερήθρα είναι μια κλασική περίπτωση συμμετρίας στη φύση, όπου ένα επαναλαμβανόμενο μοτίβο καλύπτει ένα επίπεδο.
8. Ηλιοτρόπια
Τα ηλιοτρόπια διαθέτουν ακτινική συμμετρία και μια ενδιαφέρουσα μορφή αριθμητικής συμμετρίας που είναι γνωστή ως η ακολουθία Fibonacci. Η ακολουθία Fibonacci είναι 1, 2, 3, 5, 8, 13, 21, 24, 55, 89, 144 κ.ο.κ. (κάθε νέος αριθμός προσδιορίζεται με την προσθεση των δύο προηγούμενων αριθμών μαζί). Κάπως έτσι σχηματίζονται και οι σπείρες στους ηλίανθους. Αν αντέχετε, μπορείτε να μετρήσετε!
7. Κοχύλι-ναυτίλος
Εκτός από τα φυτά, και ο ναυτίλος εμφανίζει αριθμούς Fibonacci. Για παράδειγμα, το κέλυφος του ναυτίλου αναπτύσσεται σε ένα «σπιράλ Fibonacci» εξαιτίας της προσπάθειας του κελύφους να διατηρήσει την ίδια αναλογική μορφή καθώς μεγαλώνει προς τα έξω. Στην περίπτωση του ναυτίλου, αυτό το πρότυπο ανάπτυξης του επιτρέπει να διατηρήσει το ίδιο σχήμα καθ ‘όλη τη διάρκεια ζωής του (σε αντίθεση με τους ανθρώπους, των οποίων τα σώματα αλλάζουν καθώς γερνούν).
6. Παγώνι
Έχει αμφίπλευρη συμμετρία στο φτέρωμα, πράγμα που σημαίνει ότι μπορεί να αυτό χωριστεί σε δύο μισά που ταιριάζουν απόλυτα μεταξύ τους, ενώ βασικό χρακτηριστικό τους είναι τα επαναλαμβανόμενα μοτίβα στα φτερά τους.
5. Ιστός αράχνης
Υπάρχουν περίπου 5.000 είδη αραχνών και όλες δημιουργούν σχεδόν τέλειους κυκλικούς ιστούς. Η ακτινική συμμετρία στην οποία αναπτύσσονται βοηθά να γίνουν αρκετά ισχυροί ώστε όταν το θήραμα προσκρούσει αυτός να καταστραφεί όσο το δυαντόν λιγότερο και εκείνο να καταλήξει στο… στομάχι της αράχνης.
4. Αγρογλυφικά
Δεν έχει σημασία από πού προέρχονται κυρίως επειδή είναι τόσο εντυπωσιακά από γεωμετρικής άποψης. Ο φυσικός Richard Taylor έκανε μια μελέτη σχετικά με τους κύκλους των καλλιεργειών και ανακάλυψε ότι τα περισσότερα σχέδια εμφανίζουν μια ευρεία ποικιλία συμμετρίας και μαθηματικά πρότυπα, συμπεριλαμβανομένων των φράκταλ και των σπειρών Fibonacci.
3. Νιφάδες χιονιού
Ακόμα και κάτι τόσο μικρό όπως είναι μια νιφάδα χιονιού διέπεται από τους νόμους της τάξης, καθώς οι περισσότερες εμφανίζουν έξι ακτίνες στο «σώμα» τους με περίτεχνα παρόμοια σχέδια.
2. Γαλαξίας
1. Ήλιος-φεγγάρι
Με τον ήλιο που έχει διάμετρο 1,4 εκατομμύρια χιλιόμετρα και το φεγγάρι με μόλις 3.474 χιλιόμετρα, φαίνεται σχεδόν αδύνατον να μπορεί το φεγγάρι να μπλοκάρει το φως του ήλιου και να μας δίνει περίπου πέντε ηλιακές εκλείψεις κάθε δύο χρόνια. Πώς γίνεται αυτό; Συμπτωματικά, ενώ το πλάτος του ήλιου είναι περίπου τετρακόσιες φορές μεγαλύτερο από εκείνο της σελήνης, ο ήλιος είναι επίσης περίπου τετρακόσιες φορές πιο μακριά. Η συμμετρία σε αυτή την αναλογία κάνει τον ήλιο και το φεγγάρι να φαίνονται σχεδόν ότι έχουν το ίδιο μέγεθος όταν τα βλέπουμε από τη Γη και ως εκ τούτου καθιστά απόλυτα εφικτό για το φεγγάρι να μπορεί να μπλοκάρει τον ήλιο όταν και τα δύο είναι ευθυγραμμισμένα.
ΠΗΓΗ
http://perierga.gr/2013/05/10-%CE%B5%CE%BD%CF%84%CF%85%CF%80%CF%89%CF%83%CE%B9%CE%B1%CE%BA%CE%AC-%CF%80%CE%B1%CF%81%CE%B1%CE%B4%CE%B5%CE%AF%CE%B3%CE%BC%CE%B1%CF%84%CE%B1-%CF%83%CF%85%CE%BC%CE%BC%CE%B5%CF%84%CF%81%CE%AF%CE%B1/
http://perierga.gr/2013/05/10-%CE%B5%CE%BD%CF%84%CF%85%CF%80%CF%89%CF%83%CE%B9%CE%B1%CE%BA%CE%AC-%CF%80%CE%B1%CF%81%CE%B1%CE%B4%CE%B5%CE%AF%CE%B3%CE%BC%CE%B1%CF%84%CE%B1-%CF%83%CF%85%CE%BC%CE%BC%CE%B5%CF%84%CF%81%CE%AF%CE%B1/